Map: College Pre-calculus Type: Consensus Grade Level: 12 School Year: 2011-2012 Author: Rebecca Lineman District/Building: Island Trees/Island Trees High School Created: 05/05/2011 Last Updated: 06/27/2011 | | Essential Questions | Content | Skills | Assessments | Standards/PIs | Resources/Notes | |--------|---|--|---|-------------|-----------------------------|-----------------| | Unit 1 | What are the alternate ways to perform long division? | Basic Concepts of
Algebra | Evaluate Algebraic
Expressions | | MST3-A2.A.7 | | | | How is synthetic division relevant to the roots of an equation? | Algebra Review | Determine the Domain of a
Variable
Graph Inequalities | | MST3-A2.A.8
MST3-A2.A.16 | | | | | Factoring | Find Distance on the Real
Number Line | | | | | | | Delynomials | Use the Law of Exponents Evaluate Square Roots | | | | | | | Polynomials | Recognize Special Products | | | | | | | <u>Vocabulary</u> | Factor Polynomials | | | | | | | domain, inequality, base, exponent, power, principal | Simplify Rational
Expressions | | | | | | | square root, special
products, LCM, divisor,
dividend, quotient,
remainder, synthetic | Use LCM to Add Rational Expressions | | | | | | | division | Divide Polynomials Using
Long Division | | | | | | | | Divide Polynomials Using
Synthetic Division | | | | | | | | Explain how to use long division and synthetic division. | | | | | N | How is the quadratic | Equations and | Solve Linear Equations | | MST3-A2.A.25 | | | Unit 2 | formula connected to the graph of the function? | <u>Inequalities</u> | | ī. | MST3-A2.A.26 | | | | | Quadratic Equations | Solve Rational Equations | | MST3-A2.N.6 | | | | How does interval notation help us? | Linear
Equations/Inequalities with
Absolute Value | Solve Quadratic Equations
by Factoring | | MST3-A2.N.7
MST3-A2.N.9 | | | | Why is dimensional analysis important? | Complex Numbers | Solve Quadratic Equations
by Square Root Method | | | | | | | Proportion with applications to mixture problems, conversion, and dimensional | Solve Quadratic Equations
by Completing the Square | | | | | | | analysis | Solve Quadratic Equations
Using Quadratic Formula | | | | | Radical Equations | Solve Equations Quadratic | |--|---| | | in Form | | <u>Vocabulary</u> | | | Square Root Method,
completing the square,
quadratic in form, closed
interval, open interval, half-
open interval, complex | Solve Absolute Value
Equations | | numbers, conjugate,
interest, principal, rate of | Solve Eqations by Factoring | | interest, simple interest,
mixture problems, uniform | Use Interval Notation | | radical, index, radicand | Use Properties of
Inequalities | | | Solve Linear Inequalities | | | Solve Combined Inequalities | | | Solve Absolute Value
Inequalities | | | Add, Subtract, Multiply, and
Divide Complex Numbers | | | Solve Quadratic Equations with a Negative Discriminant | | | Translate Verbal
Descriptions into
Mathematical Expressions | | | Solve Interest Problems | | | Solve Mixture Problems | | | Solve Uniform Motion
Problems | | | Solve Constant Rate Job
Problems | | | Work with nth Roots | | | Simplify Radicals | | | Rationalize Denominators | | | Solve Radical Equations | | | Simplify Expressions with
Rational Exponents | | | | | | | 1 | |--------|--|---|---|------------------------------|---| | C tich | How can you determine what the graph of a function | Functions and Graphs | Determine whether a relation is a function | MST3-A2.A.37
MST3-A2.A.38 | | | - | looks like based on its equation? | | | | | | | equations | Functions | Find the value of a function | MST3-A2.A.39
MST3-A2.A.40 | | | | | Basic Graphs | | | | | | How can you identify a piece-wise function? | Properties of Functions | Find the domain of a function | MST3-A2.A.52
MST3-A2.A.50 | | | | | Polynomial Functions | Turiction | | | | | How do asymptotes affect | Rational Root Theorem | | MST3-A2.A.51 | | | | the graphs of functions? | | Identify the graph of a function | | | | | | <u>Vocabulary</u> | | | | | | Why does the Rational Root
Theorem help us when
solving polynomial
functions? | relation, function, domain,
range, even function, odd
function, local maxima,
local minima, piecewise
functions, polynomial | Determine Even and Odd functions from a graph Determine Even and Odd | | | | | | functions, polynomial
functions, zero, root,
asymptotes, rational zeros,
real zeros | function from the equation | | | | | | | Justify why a function is even or odd | | | | | | | Use a Graph to determine where a function is increasing, decreasing or constant | | | | | | | Use a Graph to locate local maxima and local minima | | | | | | | Graph Piecewise-defined functions | | | | | | | Identify polynomial functions and their degree | | | | | | | Identify zeros of polynomial functions | | | | | | | Analyze the graph of a polynomial function | | | | | | | Find the domain of a rational function | | | | | | | Find the vertical and
horizontal asymptotes of a
rational functions | | | | | Use the Remainder and Factor Theorems | | | |--|---|--|--| | | Use the Rational Zeros
Theorem | | | | | Explain why we use the Rational Zeros Theorem | | | | | Find the real zeros of a polynomial function | | | | | Solve polynomial equations | | | | | Find complex zeros of a polynomial | | | | | | | | | | Essential Questions | Content | Skills | Assessments | Standards/PIs | Resources/Notes | |--------|--|--|--|-------------|--|-----------------| | Unit 4 | How do exponential and logarithmic functions relate to the real world? | Exponential and
Logarithmic Functions
and Equations | Evaluate exponential functions | (| MST3-A2.A.27
MST3-A2.A.28
MST3-A2.A.53 | : | | | | Exponential Functions | Graph exponential functions | | MST3-A2.A.54 | | | | | Logarithmic Functions | Define the number e | | | | | | | | Solve exponential equations | | | | | | | Growth and Decay Problems | | | | | | | | <u>Vocabulary</u> | Change exponential expressions to logarithmic expressions and logarithmic expressions to exponential expressions | | | | | | | exponential function, e,
natural logarithm function,
common logarithm function,
simple interest, compound
interest formula, continuous
compounding, present value | Evaluate logarithmic expressions | | | | | | | | Determine the domain of a logarithmic function | | | | | | | | Graph logarithmic functions | | | | | | | | Solve logarithmic equations | | | | | | | | Determine the future value of a lump sum of money | | | | | | | | Calculate effective rates of return | | | | | | | | Determine the present
value of a lump sum of
money | | | | | | | | Determine the time required
to double or triple a lump
sum of money | | | | | | | | Find equations of populations that obey the Law of Uninhibited Growth | | | | | | | | Find equations of populations that obey the Law of Decay | | | | | Unit 5 | Why are matrices helpful in solving linear equations? | System of Linear
Equations | Solve systems of equations by substitution | | | |--------|--|--|---|--|--| | | What is the purpose of a determinant? | Systems of Linear
Equations: Substitution and
Elimination | Solve systems of equations by elimination | | | | | How do matrices apply to business? | Matrices | Identify inconsistent
systems of equations
containing two variables | | | | | | Determinants | Express the solution of a | | | | | Why do we decompose rational expressions into partial fractions? | Matrix Algebra | system of dependent
equations containing two
variables | | | | | | Partial Fraction
Decomposition | Solve systems of three equations containing three variables | | | | | | <u>Vocabulary</u> | Identify inconsistent
systems of equations
containing three variables | | | | | | consistent, inconsistent, independent, dependent, method of substitution, method of elimination, matrix, row index, column index, augmented matrix, coefficient matrix, row operations, row echlelon | Express the solution of a system of dependent equations containing three variables | | | | | | form, determinant,
Cramer's Rule, scalar,
inverse, nonsingular,
singular, | Write the augmented matrix of a system of linear equations | | | | | | | Write the system from the augmented matrix | | | | | | | Perform row operations on a matrix | | | | | | | Solve a system of linear equations using matrices | | | | | | | Evaluate 2 by 2 determinants | | | | | | | Use Cramer's Rule to solve
a system of two equations
containing two variables | | | | | | | Evaluate 3 by 3 determinants | | | |--------|---|----------------------------|---|---|--| | | | | Use Cramer's Rule to solve
a system of three equations
containing three variables | | | | | | | Know how to apply properties of determinants | | | | | | | Find the sum and difference of two matrices | | | | | | | Find scalar multiples of a matrix | | | | | | | Find the product of two matrices | | | | | | | Find the inverse of a matrix | | | | | | | Solve a system of linear equations using inverse matrices | | | | | | | Decompose P/Q, where Q has only nonrepeated linear factors | | | | | | | Decompose P/Q, where Q has repeated linear factors | | | | | | | Decompose P/Q, where Q has a nonrepeated irreducible quadratic factor | | | | | | | Decompose P/Q, where Q has repeated irreducible quadratic factor | | | | Unit 6 | Why is polar graphing important? | Polar Coordinates | Plot points using polar coordinates | (| | | j | What are some applications of polar graphing? | Polar Coordinates | Convert from polar coordinates to rectangular | | | | | | Polar Equations and Graphs | coordinates to rectangular coordinates | | | | | <u>Vocabulary</u> | Convert from rectangular coordinates to polar coordinates | | | |--|-----------------------|---|--|--| | | polar grids, cardiod, | Graph and identify polar equations by converting to rectangular equations | | | | | | Graph polar equations using a graphing utility | | | | | | Graph polar equations by plotting points | | | | | Essential Questions | Content | Skills | Assessments | Standards/PIs | Resources/Notes | |--------|---|---|--|-------------|-----------------------------|-----------------| | Unit 7 | How can conic sections be applied in the real world? | Conic Sections | Work with circles with center at origin | (| MST3-G.G.74
MST3-A2.A.47 | | | | | The Circle | Work with circles with center at (h, k) | | MST3-A2.A.24 | | | | | The Ellipse | | | | | | | | The Hyperbola | Convert from standard form to center-radius form | | | | | | | Vocabulary | Work with ellipses with center at the orgin | | | | | | | conic, ellipse, hyperbola,
major axis, minor axis,
vertices, foci, complete the
square, asymptotes | Work with ellipses with center at (h, k) | | | | | | | oqualo, adymptotod | Solve applied problems involving ellipses | | | | | | | | Work with hyperbolas with center at the origin | | | | | | | | Find the asymptotes of a hyperbola | | | | | | | | Work with hyperbolas with center at (h, k) | | | | | | | | Solve applied problems involving hyperbolas | | | | | Unit 8 | How does the limit describe the nature of a function? | Intro to Calculus | Find the limit using a table | Ċ | | | | | What does the derivative tell us about the function? | Limits | Find the limit using a graph | | | | | | | Derivatives | Find the one-sided limits of a function | | | | | | | <u>Vocabulary</u> | Determine whether a function is continuous | | | | | | | limit, "as x approaches",
derivative | Find the derivative using the limit definition | | | | | | Apply the power rule | | | |--|--|--|--| | | Apply the chain rule | | | | | Apply the product rule | | | | | Apply the quotient rule | | | | | Explain the difference
between average rate
change and instantaneous
rate of change | | | ## Key to Standards used in this Map MST3-A2.N.6 [1 occurence] - MST Standard 3 - Number Sense and Operations Strand - Students will understand meanings of operations and procedures, and how they relate to one another. [Operations] - Performance Indicator A2.N.6 - write square roots of negative numbers in terms of i [Algebra 2 and Trigonometry] MST3-A2.N.7 [1 occurence] - MST Standard 3 - Number Sense and Operations Strand - Students will understand meanings of operations and procedures, and how they relate to one another. [Operations] - Performance Indicator A2.N.7 - simplify powers of i [Algebra 2 and Trigonometry] MST3-A2.N.9 [1 occurence] - MST Standard 3 - Number Sense and Operations Strand - Students will understand meanings of operations and procedures, and how they relate to one another. [Operations] - Performance Indicator A2.N.9 - perform arithmetic operations on complex numbers and write the answer in the form a + bi . [Algebra 2 and Trigonometry] MST3-A2.A.7 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Variables and Expressions] - Performance Indicator A2.A.7 - factor polynomial expressions completely, using any combination of the following techniques: common factor extraction, difference of two perfect squares, quadratic trinomials [Algebra 2 and Trigonometry] MST3-A2.A.8 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Variables and Expressions] - Performance Indicator A2.A.8 - apply the rules of exponents to simplify expressions involving negative and/or fractional exponents [Algebra 2 and Trigonometry] MST3-A2.A.16 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Variables and Expressions] - Performance Indicator A2.A.16 - perform arithmetic operations with rational expressions and rename to lowest terms [Algebra 2 and Trigonometry] MST3-A2.A.24 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Equations and Inequalities] - Performance Indicator A2.A.24 - know and apply the technique of completing the square [Algebra 2 and Trigonometry] MST3-A2.A.25 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Equations and Inequalities] - Performance Indicator A2.A.25 - solve quadratic equations, using the quadratic formula [Algebra 2 and Trigonometry] MST3-A2.A.26 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Equations and Inequalities] - Performance Indicator A2.A.26 - find the solution to polynomial equations of higher degree that can be solved using factoring and/or the quadratic formula [Algebra 2 and Trigonometry] MST3-A2.A.27 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Equations and Inequalities] - Performance Indicator A2.A.27 - solve exponential equations with and without common bases [Algebra 2 and Trigonometry] MST3-A2.A.28 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Equations and Inequalities] - Performance Indicator A2.A.28 - solve a logarithmic equation by rewriting as an exponential equation [Algebra 2 and Trigonometry] MST3-A2.A.37 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.37 - define a relation and function [Algebra 2 and Trigonometry] MST3-A2.A.38 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.38 - determine when a relation is a function [Algebra 2 and Trigonometry] MST3-A2.A.39 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.39 - determine the domain and range of a function from its equation [Algebra 2 and Trigonometry] MST3-A2.A.40 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.40 - write functions in functional notation [Algebra 2 and Trigonometry] MST3-A2.A.47 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Coordinate Geometry] - Performance Indicator A2.A.47 - determine the center-radius form for the equation of a circle in standard form [Algebra 2 and Trigonometry] MST3-A2.A.50 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Coordinate Geometry] - Performance Indicator A2.A.50 - approximate the solution to polynomial equations of higher degree by inspecting the graph [Algebra 2 and Trigonometry] MST3-A2.A.51 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Coordinate Geometry] - Performance Indicator A2.A.51 - determine the domain and range of a function from its graph [Algebra 2 and Trigonometry] MST3-A2.A.52 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Coordinate Geometry] - Performance Indicator A2.A.52 - identify relations and functions, using graphs [Algebra 2 and Trigonometry] MST3-A2.A.53 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Coordinate Geometry] - Performance Indicator A2.A.53 - graph exponential functions of the form y=bx for positive values of b, including b=e [Algebra 2 and Trigonometry] MST3-A2.A.54 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Coordinate Geometry] - Performance Indicator A2.A.54 - graph logarithmic functions, using the inverse of the related exponential function [Algebra 2 and Trigonometry] MST3-G.G.74 [1 occurrence] - MST Standard 3 - Geometry Strand - Students will apply coordinate geometry to analyze problem solving situations. [Coordinate Geometry] - Performance Indicator G.G.74 - graph circles of the form (x-h)2 + (j-k)2 = r2 [Geometry]