Map: Algebra 2/Trigonometry Type: Consensus Grade Level: 11 School Year: 2010-2011

Author: Kelly Cockren District/Building: Island Trees/Island Trees High School

Created: 07/19/2010 Last Updated: 07/19/2010

This map copied from: Algebra 2/Trigonometry by Rebecca Lineman

	Essential Questions	Content	Skills	Assessments	Standards/PIs	Resources/Notes
nit 1	Why is factoring so important in mathematics?	Rational Expressions	Recognizes and factors using greatest common		MST3-A2.A.1	
5			factor		MST3-A2.A.7	
	How can we combine more than one factoring method	Factoring	Recognizes and factors		MST3-A2.A.16	
	to factor more complicated expressions?		using the difference of two perfect squares		MST3-A2.A.17	
		Operations with Rational			MST3-A2.A.23	
	expressions to solve problems?	Solving Equations	Recognizes and factors trinomial expressions with a coefficient of one or			
	Why are algebraic fractions important in mathematics?		greater			
	mathematics?	<u>Vocabulary</u>	Recognizes and factors			
	How can a proportion be converted into a linear or		algebraic expressions			
	quadratic equation?	binomial	trinomials with a lead coefficient of one (after			
		trinomial	doing GCF)			
	How can we recognize a complex fraction?	polynomial				
		degree of a polynomial	Recognizes and factors algebraic expressions that involves factoring out a negative			
		degree of a term				
		FOIL method				
		base	Recognizes and factors			
		exponent	algebraic expressions			
		power	method			
		factor				
		lead coefficient	Multiplies and divides			
		factoring completely	algebraic fractions and expresses the product or			
		solve	quotient in simplest form including factor of -1			
		solution				
		linear	Adds or subtracts			
		absolute value	algebraic fractional			

		equation inequality	expressions with like or unlike monomial or binomial denominators Simplifies complex fractional expressions Solves rational equations by multiplying all terms by LCD Solves absolute value equations algebraically and graphically Solves absolute value inequalities algebraically and graphically		
Unit 2	How can evaluating radical expressions be used in mathematics?	Radicals and Complex Numbers	Simplifies radical terms (with or without variable in the radicand)	MST3-A2.N.2 MST3-A2.N.5	
	What skills are needed to simplify radical expressions? How can we tell the difference between a real and an imaginary number?	Operations with Radicals Radical Equations Powers of i Vocabulary Radicand Root n-th Root Rationalize Imaginary Number (i) Complex Number Conjugate Vector	Multiplies and divides radical expressions using like and unlike radical terms and expresses the result in simplest form Adds and subtracts radical expressions using like and unlike radical terms and expresses the result in simplest form Determines the n-th root Recognizes the conjugate of an expression Rationalizes a denominator containing a radical expression	MST3-A2.N.6 MST3-A2.N.7 MST3-A2.N.8 MST3-A2.N.9 MST3-A2.A.13 MST3-A2.A.14 MST3-A2.A.15 MST3-A2.A.22	

			Isolates the radical Employs the correct procedure to solve radical equations Describes the square roots of negative numbers in terms of i Simplifies the powers of i Defines complex numbers Determines conjugates of complex numbers Represents complex numbers graphically Performs algebraic operations with complex numbers and writes answer in a + bi form		
Unit 3	How can we solve a quadratic equation that is not factorable?	<u>Quadratics</u>	Solves quadratic equations using factoring	MST3-A2.A.2 MST3-A2.A.3	
	How can we use our prior knowledge of solving quadratic equations to solve quadratic inequalities? How is solving a system of equations algebraically	Quadratic Formula Quadratic Equations and Inequalitites Systems of Equations and Graphing	Identifies parts of the quadratic formula (a, b, c) Solves quadratic equations using the quadratic formula including a + bi form	MST3-A2.A.4 MST3-A2.A.20 MST3-A2.A.21 MST3-A2.A.24 MST3-A2.A.25 MST3-A2.A.26	

different from solving a system graphically?	<u>Vocabulary</u> quadratic quadratic formula	Uses the discriminant or a graph to determine the nature of the roots of a quadratic equation		
	discriminant nature of the roots sum of the roots product of the roots	Determines the sum and product of the roots of a quadratic equation		
	completing the square quadratic inequality extraneous roots	Determines the quadratic equation, given the roots or the sum and product of its roots		
		Solves quadratic equations using the completing the square method		
		Solves quadratic equations and inequalities (both radical and rational) algebraically and graphically, including equations with extraneous roots Solves a quadratic/linear system of equations graphically		

	Essential Questions	Content	Skills	Assessments	Standards/PIs
4	How can the	Relations and Functions	Defines a		MST3-A2.A.5
Unit	domain and range of a		relation and a function		MST3-A2.A.37
	function be used in real-life	Relations/Functions	Determines		MST3-A2.A.38
	situations?		when a relation is a function		MST3-A2.A.39
	How can prior knowledge of	Composition/Inverses	Identifies		MST3-A2.A.40
	transformations		relations and functions		MST3-A2 A 41
	the	Circles/Transformations/Variations	using graphs		MST3-A2 A /2
	functions?	Vacabulary	Applies the		MGT2 A2 A 42
	How is the	vocabulary	test		MST3-A2.A.43
	form of the		Determines the		MS13-A2.A.44
	equation of a circle related to	relation	domain and range of a		MST3-A2.A.45
	the standard form of the	function	function from its equation		MST3-A2.A.46
	equation a circle?	domain	Determines the		MST3-A2.A.47
	How can direct	range	domain and range of a		MST3-A2.A.48
	and inverse	one-to-one	function from		MST3-A2.A.49
	applied to real-	onto	Writes		MST3-A2.A.50
	IIIe situations:	composition	functions in		MST3-A2.A.51
		inverse	notation		MST3-A2.A.52
		direct variation	Uses functional		
		inverse variation	evaluate		
			given values in		
			the domain		
			Determines if a function is one-		
			to-one, onto, or both		
			Approximates		
			the solution to polynomial		
			equations of higher degree		
			by inspecting the graph		
			Identifies composite notation		
			Evaluates the		

	composition of functions	
	Writes a composition of functions as a single function	
	Defines the inverse of a function	
	Compares a reflection in the line $y = x$ with the inverse of a function	
	Determines the inverse of a function and uses composition to justify the result	
	Performs transformations with functions and relations: $f(x + a), f(x) + a, f(-x), -f(x), af(x)$	
	States the center of a circle as an ordered pair	
	Writes the equation of a circle given the graph or the center and radius	
	Determines the center-radius form for the equation of a circle that is given in standard form	
	Writes the equation of a circle, given its center and a point on the circle	

			Uses direct and inverse variation to solve for unknown values		
ы	How can we	Exponents	Applies the		MST3-A2.N.1
Chit	express different		rules of exponents to		MST3-A2.A.6
	numbers using a common	Properties	simplify expressions		MST3-A2.A.8
	base?		including:		MST3-A2.A.9
	How are radical expressions	Fractional Exponents	product of powers, power		MST3-A2.A.10
	and fractional exponents		to a power, quotient of		MST3-A2.A.11
	related?	Exponential Equations	powers, zero powers, power		MST3-A2.A.12
	How are solving		of a product, power of a	3	MST3-A2.A.27
	exponential equations	Exponential Expressions/Functions	quotient, negative		MST3-A2.A.53
	similar to solving linear	Vocabulary	exponents		
	equations?				
	Why is "e"	base	Converts between		
	significant when solving		fractional		
	exponential	exponent	radical form		
	equations?	power	Evolucitor on		
		е	expression with		
			fractional		
			(with and		
			without a		
			calculator)		
			Expresses both		
			sides of an		
			equation in		
			terms of the		
			same base		
			Solves an		
			exponential		
			appropriately		
			Recognizes the		
			value of "e" as		
			2.718		

			Evaluates exponential expressions involving base e Graphs exponential functions of the form $y = b^x$ for positive values of b, including $b = e$		
θ	How can we manipulate	Logarithms	Converts between	MST3-A2.A.18	
Uni	exponential equations using		exponential and logarithmic	MST3-A2.A.19	
	logs?	Introduction to Logs	form	MST3-A2.A.28	
	How can logs be applied to solving real-life word problems?	Properties of Logs Equations and Applications Vocabulary	Evaluates logarithmic expressions in any base Solves basic logarithmic equations by converting to exponential form	MST3-A2.A.54	
		logarithm	Graphs logarithmic		
		growth	functions as		
		decay	an exponential function		
			Applies the properties of logarithms to rewrite logarithmic expressions in equivalent forms (product, quotient, and power properties)		
			Solves logarithmic equations using		

Curriculum Map - Algebra 2/Trigonom	Page 9 of 19	
	properties of logarithms	
	Solves application problems that require the use of logarithms (half-life, growth and decay, compound interest, etc.)	

	Essential Questions	Content	Skills	Assessments	Standards/PIs	Resources/Notes
~	How can the coordinate	<u>Trigonometry</u>	Sketches the unit circle		MST3-A2.A.55	
Unit	plane be compared to and applied to trigonometry?		and represents angles in standard position		MST3-A2.A.56	
	How are the 3 standard	The Unit Circle	Expresses and applies the		MST3-A2.A.57	
	related to their cofunctions	Co-Functions and	as ratios of the sides of a		MST3-A2.A.58	
	and reciprocal functions?	Reciprocal Functions	right triangle		MST3-A2.A.59	
	How do we use the Pythagorean Theorem and	Arc Length	Recalls the exact values for special angles (0, 30,		MST3-A2.A.60	
	trig functions	Graphing Sine, Cosine,	45, 60, 90)		MGT2 A2 A 41	
	missing information?		Sketches and applies the		W313-A2.A.01	
	What is the relationship	Inverse Trig Functions	in standard position		MST3-A2.A.62	
	between the cosine and sine of an angle and its	Reciprocal Trig Functions	Writes trig values as		MST3-A2.A.63	
	measure?	Law of Sines and Cosines	functions of positive acute		MST3-A2.A.64	
	How can the graphs of the	Area of a Triangle or			MST3-A2.A.65	
	sine, cosine, and tangent functions be applied to	Parallelogram	Converts between degrees and radians		MST3-A2.A.66	
	real-life situations?	Ambiguous Case	Applies trigonometry to		MST3-A2.A.67	
	How can the Law of Sines	Pythagorean Identities	the coordinate plane ((x, $y) = x$) (cos sin))		MST3-02 0 68	
	used to help find missing	Sum and Difference of	y)> (cos, siri))		MOTO AO A (O	
	information?	Angles Formulas	trigonometric functions		MS13-A2.A.69	
	Why is it necessary to introduce a new formula	Double Angle and Half Angle Formulas	when given a point on the terminal side of the angle		MST3-A2.A.70	
	to find the area of a triangle?	Trigonometric Equations	Determines the		MST3-A2.A.71	
		Veeebulen.	trigonometric functions of		MST3-A2.A.72	
	knowledge of solving		technology		MST3-A2.A.73	
	equations for variables to solving trigonometric				MST3-A2.A.74	
	equations for angles?	unit circle			MST3-A2.A.75	
		quadrant			MST3-A2 A 76	
		reference angle	Defines cofunctions and reciprocal functions		MGT0 A0 A 77	
		terminal side	Knows and applies the		MS13-A2.A.77	
		standard position	cofunction and reciprocal relationships between		MST3-A2.M.1	
		co-terminal	trigonometric ratios		IVIS I 3-A2.IVI.2	
		special angles	Uses the reciprocal and cofunction relationships to			
		degrees	find the value of the secant, cosecant, and			
		minutes	cotangent of special angles			
		radians				
		reciprocal functions				

co-functions	Uses arc length formula to determine a missing arc, radius, or central angle	
arc length	given specific information	
amplitude	Sketches and recognizes	
frequency	the form $y = AsinBx$, $y = AcosBy, and y = tany$	
period	Acosba, and $y = tana$	
cycles	period, frequency and	
asymptotes	graph or equation of a	
inverse trig functions		
arc	domain and range to trig	
included angle	graphs	
vector	function that is	
maginitude	represented by a given graph	
forces	Applies concepts from trig	
resultant	problems	
angle of elevation		
angle of depression	Sketches and recognizes	
ambiguous case	of sine, cosine, and tangent	
	Uses various inverse notation when writing the equations of inverse functions	
	Restricts the domain of the sine, cosine, and tanget functions to ensure the existence of an inverse function	
	Uses inverse functions to find the measure of an angle given its sine, cosine, or tangent	
	Sketches and recognizes the graphs of the functions $y = \sec x$, $y = \csc x$, and $y = \cot x$	
	Compares and contrasts the graphs, including discussion of asymptotes, domain, period, and cycles	

		 Solves for an unknown side or angle using the law of sines or law of cosines Applies forces and vectors to the law of cosines Apples angles of elevation and depression to law of sines Determines the area of a triangle or a parallelogram, using the measure of 2 sides and the included angle Determines the solution(s) from the SSA situation (ambiguous case) Justifies the Pythagorean Identities Applies the angle sum and difference formulas for triginometric functions Solves trigonometric equations for all values of the variable from 0 to 360 (Linear and Quadratic) Substitutes appropriately using Pythagorean Identities and Double Angle formulas 			
 How can we find the probability of independent events? How can the Binomial Theorem be used to find the expansion of higher degree expressions?	Probability Binomial Probabilities Combinatortics	Determines the probability of independent events Expands binomials using the Binomial Theorem and finds specific terms of the expansion	 (MST3-A2.S.9 MST3-A2.S.10 MST3-A2.S.11 MST3-A2.S.12	

Unit 8	How can we apply our knowledge of probability to more complex probability applications? How do we apply the use of permutations, combinations, and the Fundamental Counting Principle to find the number of ways two or more events can occur?	Vocabulary indepent events binomial theorem exactly at least at most expansion pascal's triangle permutations combinations compound events	Finds the probability of exactly, at least, at most of "r" successes in "n" trials Calculates theoretical probabilities, including geometric applications Determines a sample space Calculates the number of possible permutations of "n" items taken "r" at a time Calculates the number of possible combinations of "n" items taken "r" at a time Uses permutations, combinations, and the Counting Principle to determine the number of elements in a sample space Analyzes and solves verbal problems	MST3-A2.S.13 MST3-A2.S.13 MST3-A2.S.14 MST3-A2.S.15 MST3-A2.A.36	
σ t	Why is sigma notation used in mathematics?	<u>Statistics</u>	Knows and applies sigma notation	MST3-A2.S.1	1
5			I I		
.ic	How are measures of		Calculates measures of	MST3-A2.S.2	
Ū	How are measures of central tendency and dispersion used in	Sigma Notation	Calculates measures of central tendency with grouped data	MST3-A2.S.2 MST3-A2.S.3	
, Cni	How are measures of central tendency and dispersion used in statistics?	Sigma Notation Statistical Measure	Calculates measures of central tendency with grouped data	MST3-A2.S.2 MST3-A2.S.3 MST3-A2.S.4	
Сы: С	How are measures of central tendency and dispersion used in statistics? How can statistical data be affected when the type of	Sigma Notation Statistical Measure Studies and Surveys	Calculates measures of central tendency with grouped data Calculates measures of dispersion (range, guartiles, interguartile	MST3-A2.S.2 MST3-A2.S.3 MST3-A2.S.4 MST3-A2.S.5	
Ξ.	How are measures of central tendency and dispersion used in statistics? How can statistical data be affected when the type of survey conducted is changed?	Sigma Notation Statistical Measure Studies and Surveys Normal Distribution	Calculates measures of central tendency with grouped data Calculates measures of dispersion (range, quartiles, interquartile range, standard deviation and variance) for both	MST3-A2.S.2 MST3-A2.S.3 MST3-A2.S.4 MST3-A2.S.5 MST3-A2.S.6	
C	How are measures of central tendency and dispersion used in statistics? How can statistical data be affected when the type of survey conducted is changed? How can the use of the	Sigma Notation Statistical Measure Studies and Surveys Normal Distribution Regression Models	Calculates measures of central tendency with grouped data Calculates measures of dispersion (range, quartiles, interquartile range, standard deviation and variance) for both samples and populations	MST3-A2.S.2 MST3-A2.S.3 MST3-A2.S.4 MST3-A2.S.5 MST3-A2.S.6 MST3-A2.S.7	
, Chri	How are measures of central tendency and dispersion used in statistics? How can statistical data be affected when the type of survey conducted is changed? How can the use of the Normal Curve be applied to real-life situations?	Sigma Notation Statistical Measure Studies and Surveys Normal Distribution Regression Models Vocabulary	Calculates measures of central tendency with grouped data Calculates measures of dispersion (range, quartiles, interquartile range, standard deviation and variance) for both samples and populations	MST3-A2.S.2 MST3-A2.S.3 MST3-A2.S.4 MST3-A2.S.5 MST3-A2.S.6 MST3-A2.S.7 MST3-A2.S.8	
nn:	How are measures of central tendency and dispersion used in statistics? How can statistical data be affected when the type of survey conducted is changed? How can the use of the Normal Curve be applied to real-life situations? How can different regression models be used to represent statistical	Sigma Notation Statistical Measure Studies and Surveys Normal Distribution Regression Models <u>Vocabulary</u> sigma notation	Calculates measures of central tendency with grouped data Calculates measures of dispersion (range, quartiles, interquartile range, standard deviation and variance) for both samples and populations Differentiates between various types of studies (survey, observation, controlled experiment)	MST3-A2.S.2 MST3-A2.S.3 MST3-A2.S.4 MST3-A2.S.5 MST3-A2.S.6 MST3-A2.S.7 MST3-A2.S.8 MST3-A2.S.16	
, Chri	How are measures of central tendency and dispersion used in statistics? How can statistical data be affected when the type of survey conducted is changed? How can the use of the Normal Curve be applied to real-life situations? How can different regression models be used to represent statistical data?	Sigma Notation Statistical Measure Studies and Surveys Normal Distribution Regression Models Vocabulary sigma notation measures of central tendency	Calculates measures of central tendency with grouped data Calculates measures of dispersion (range, quartiles, interquartile range, standard deviation and variance) for both samples and populations Differentiates between various types of studies (survey, observation, controlled experiment) Determines factors which may affect the outcomes of a survey	MST3-A2.S.2 MST3-A2.S.3 MST3-A2.S.4 MST3-A2.S.5 MST3-A2.S.6 MST3-A2.S.7 MST3-A2.S.8 MST3-A2.S.16	
Uni	How are measures of central tendency and dispersion used in statistics? How can statistical data be affected when the type of survey conducted is changed? How can the use of the Normal Curve be applied to real-life situations? How can different regression models be used to represent statistical data?	Sigma Notation Statistical Measure Studies and Surveys Normal Distribution Regression Models Vocabulary sigma notation measures of central tendency measures of dispersion	Calculates measures of central tendency with grouped data Calculates measures of dispersion (range, quartiles, interquartile range, standard deviation and variance) for both samples and populations Differentiates between various types of studies (survey, observation, controlled experiment) Determines factors which may affect the outcomes of a survey	MST3-A2.S.2 MST3-A2.S.3 MST3-A2.S.4 MST3-A2.S.5 MST3-A2.S.6 MST3-A2.S.7 MST3-A2.S.8 MST3-A2.S.16	

		l	l	1 1
			i	
	observation	Identifies the properties of		
		a Normal Distribution		
	controlled experiment			
	-	Interprets the graphs of	I	
	bias	Normal Distribution	- (
			(
	normal distribution	Finds the percentages	1	
		under the Normal Curve	r	
			1	
	normal curve	A 11 11 11 11 11	1	
		Applies percentiles to the	(
	percentiles	Normal Curve	(
			(
	scatter plot	Applies the Normal	(
		Distribution Curve, and its	ć	
	regression	properties, to word	r	
		problems involving real-		
	correlation coefficient	life date		
		lile data	C	
			1	
		Constructs a scatter plot		
		without the use of		
		calculator		
		Determines the		
		appropriate regression		
		model from a coattor plot		
		(linear, logarithmic,		
		exponential, power)		
		Determines the function		
		for the regression model		
		using appropriate		
		technology		
		teennology		
		Uses the regression		
		function to evaluate and		
		predict real world		
		situations (interpolate and		
		extrapolate)		
		Determines the correlation		
		coefficient (nositive		
		pagative pape) and uses		
		negative, none) and uses		
		It to determine the		
		strength of a linear		
		relationship		

	Essential Questions	Content	Skills	Assessments	Standards/PIs	Resources/Notes
Unit 10	How can we differentiate between an arithmetic sequence and a geometric	Sequences and Series	Writes the first "n" terms of a sequence given an explicit formula		MST3-A2.A.29 MST3-A2.A.30	
Uni	sequence and a geometric sequence? How can the concept of sigma notation be applied to our study of sequences and series? How are recursive sequences related to arithmetic and geometric sequences?	Sequences Sigma Notation and Series Arithmetic and Geometric Sequences and Series Recursive Sequences Vocabulary sequence series arithmetic geometric common difference common ratio recursive explicit formula	explicit formula Finds a specific term of a sequence given an explicit formula Writes an explicit formula given the terms of the sequence Represents the sum of a series using Sigma Notation Defines an arithmetic sequence and a geometric sequence and a geometric sequence in an arithmetic sequence Calculates the common ratio in a geometric sequence Determines a specific term of an arithmetic or geomteric sequence Determines the sum of the first "n" terms of an arithmetic or geometric series Applies knowledge to real life word problems Specifies the terms of a sequence given a recursive definition		MST3-A2.A.30 MST3-A2.A.31 MST3-A2.A.32 MST3-A2.A.33 MST3-A2.A.34 MST3-A2.A.35	
Key	to Standards used in this	Мар				

MST3-A2.N.1 [1 occurence] - MST Standard 3 - Number Sense and Operations Strand - Students will understand meanings of operations and procedures, and how they relate to one another. [Operations] - Performance Indicator A2.N.1 - evaluate numerical expressions with negative and/or fractional exponents, without the aid of a calculator (when the answers are rational numbers) [Algebra 2 and Trigonometry]

MST3-A2.N.2 [1 occurence] - MST Standard 3 - Number Sense and Operations Strand - Students will understand meanings of operations and procedures, and how they relate to one another. [Operations] - Performance Indicator A2.N.2 - perform arithmetic operations (addition, subtraction, multiplication, division) with expressions containing

irrational numbers in radical form [Algebra 2 and Trigonometry]

MST3-A2.N.5 [1 occurence] - MST Standard 3 - Number Sense and Operations Strand - Students will understand meanings of operations and procedures, and how they relate to one another. [Operations] - Performance Indicator A2.N.5 - rationalize a denominator containing a radical expression [Algebra 2 and Trigonometry]

MST3-A2.N.6 [1 occurence] - MST Standard 3 - Number Sense and Operations Strand - Students will understand meanings of operations and procedures, and how they relate to one another. [Operations] - Performance Indicator A2.N.6 - write square roots of negative numbers in terms of i [Algebra 2 and Trigonometry]

MST3-A2.N.7 [1 occurence] - MST Standard 3 - Number Sense and Operations Strand - Students will understand meanings of operations and procedures, and how they relate to one another. [Operations] - Performance Indicator A2.N.7 - simplify powers of i [Algebra 2 and Trigonometry]

MST3-A2.N.8 [1 occurence] - MST Standard 3 - Number Sense and Operations Strand - Students will understand meanings of operations and procedures, and how they relate to one another. [Operations] - Performance Indicator A2.N.8 - determine the conjugate of a complex number [Algebra 2 and Trigonometry]

MST3-A2.N.9 [1 occurence] - MST Standard 3 - Number Sense and Operations Strand - Students will understand meanings of operations and procedures, and how they relate to one another. [Operations] - Performance Indicator A2.N.9 - perform arithmetic operations on complex numbers and write the answer in the form a + bi . [Algebra 2 and Trigonometry]

MST3-A2.A.1 [1 occurence] - MST Standard 3 - Algebra Strand - Students will represent and analyze algebraically a wide variety of problem solving situations. [Equations and Inequalities] - Performance Indicator A2.A.1 - solve absolute value equations and inequalities involving linear expressions in one variable [Algebra 2 and Trigonometry]

MST3-A2.A.2 [1 occurence] - MST Standard 3 - Algebra Strand - Students will represent and analyze algebraically a wide variety of problem solving situations. [Equations and Inequalities] - Performance Indicator A2.A.2 - use the discriminant to determine the nature of the roots of a quadratic equation [Algebra 2 and Trigonometry]

MST3-A2.A.3 [1 occurence] - MST Standard 3 - Algebra Strand - Students will represent and analyze algebraically a wide variety of problem solving situations. [Equations and Inequalities] - Performance Indicator A2.A.3 - solve systems of equations involving one linear equation and one quadratic equation algebraically [Algebra 2 and Trigonometry]

MST3-A2.A.4 [1 occurence] - MST Standard 3 - Algebra Strand - Students will represent and analyze algebraically a wide variety of problem solving situations. [Equations and Inequalities] - Performance Indicator A2.A.4 - solve quadratic inequalities in one and two variables, algebraically and graphically [Algebra 2 and Trigonometry]

MST3-A2.A.5 [1 occurence] - MST Standard 3 - Algebra Strand - Students will represent and analyze algebraically a wide variety of problem solving situations. [Equations and Inequalities] - Performance Indicator A2.A.5 - use direct and inverse variation to solve for unknown values [Algebra 2 and Trigonometry]

MST3-A2.A.6 [1 occurence] - MST Standard 3 - Algebra Strand - Students will represent and analyze algebraically a wide variety of problem solving situations. [Equations and Inequalities] - Performance Indicator A2.A.6 - solve an application which results in an exponential function [Algebra 2 and Trigonometry]

MST3-A2.A.7 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Variables and Expressions] - Performance Indicator A2.A.7 - factor polynomial expressions completely, using any combination of the following techniques: common factor extraction, difference of two perfect squares, quadratic trinomials [Algebra 2 and Trigonometry]

MST3-A2.A.8 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Variables and Expressions] - Performance Indicator A2.A.8 - apply the rules of exponents to simplify expressions involving negative and/or fractional exponents [Algebra 2 and Trigonometry]

MST3-A2.A.9 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Variables and Expressions] - Performance Indicator A2.A.9 - rewrite algebraic expressions that contain negative exponents using only positive exponents [Algebra 2 and Trigonometry]

MST3-A2.A.10 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Variables and Expressions] - Performance Indicator A2.A.10 - rewrite algebraic expressions with fractional exponents as radical expressions [Algebra 2 and Trigonometry]

MST3-A2.A.11 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Variables and Expressions] - Performance Indicator A2.A.11 - rewrite algebraic expressions in radical form as expressions with fractional exponents [Algebra 2 and Trigonometry]

MST3-A2.A.12 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Variables and Expressions] - Performance Indicator A2.A.12 - evaluate exponential expressions, including those with base e [Algebra 2 and Trigonometry]

MST3-A2.A.13 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Variables and Expressions] - Performance Indicator A2.A.13 - simplify radical expressions [Algebra 2 and Trigonometry]

MST3-A2.A.14 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Variables and Expressions] - Performance Indicator A2.A.14 - perform addition, subtraction, multiplication and division of radical expressions [Algebra 2 and Trigonometry]

MST3-A2.A.15 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Variables and Expressions] - Performance Indicator A2.A.15 - rationalize denominators involving algebraic radical expressions [Algebra 2 and Trigonometry]

MST3-A2.A.16 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Variables and Expressions] - Performance Indicator A2.A.16 - perform arithmetic operations with rational expressions and rename to lowest terms [Algebra 2 and Trigonometry]

MST3-A2.A.17 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Variables and Expressions] - Performance Indicator A2.A.17 - simplify complex fractional expressions [Algebra 2 and Trigonometry]

MST3-A2.A.18 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Variables and Expressions] - Performance Indicator A2.A.18 - evaluate logarithmic expressions in any base [Algebra 2 and Trigonometry]

MST3-A2.A.19 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Variables and Expressions] - Performance Indicator A2.A.19 - apply the properties of logarithms to rewrite logarithmic expressions in equivalent forms [Algebra 2 and Trigonometry]

MST3-A2.A.20 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Equations and Inequalities] - Performance Indicator A2.A.20 - determine the sum and product of the roots of a quadratic equation by examining its coefficients [Algebra 2 and Trigonometry]

MST3-A2.A.21 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Equations and Inequalities] - Performance Indicator

A2.A.21 - determine the quadratic equation, given the sum and product of its roots [Algebra 2 and Trigonometry]

MST3-A2.A.22 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Equations and Inequalities] - Performance Indicator A2.A.22 - solve radical equations [Algebra 2 and Trigonometry]

MST3-A2.A.23 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Equations and Inequalities] - Performance Indicator A2.A.23 - solve rational equations and inequalities [Algebra 2 and Trigonometry]

MST3-A2.A.24 [1 occurence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Equations and Inequalities] - Performance Indicator A2.A.24 - know and apply the technique of completing the square [Algebra 2 and Trigonometry]

MST3-A2.A.25 [1 occurrence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Equations and Inequalities] - Performance Indicator A2.A.25 - solve quadratic equations, using the quadratic formula [Algebra 2 and Trigonometry]

MST3-A2.A.26 [1 occurrence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Equations and Inequalities] - Performance Indicator A2.A.26 - find the solution to polynomial equations of higher degree that can be solved using factoring and/or the quadratic formula [Algebra 2 and Trigonometry]

MST3-A2.A.27 [1 occurrence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Equations and Inequalities] - Performance Indicator A2.A.27 - solve exponential equations with and without common bases [Algebra 2 and Trigonometry]

MST3-A2.A.28 [1 occurrence] - MST Standard 3 - Algebra Strand - Students will perform algebraic procedures accurately. [Equations and Inequalities] - Performance Indicator A2.A.28 - solve a logarithmic equation by rewriting as an exponential equation [Algebra 2 and Trigonometry]

MST3-A2.A.29 [1 occurrence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.29 - identify an arithmetic or geometric sequence and find the formula for its nth term [Algebra 2 and Trigonometry]

MST3-A2.A.30 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.30 - determine the common difference in an arithmetic sequence [Algebra 2 and Trigonometry]

MST3-A2.A.31 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.31 - determine the common ratio in a geometric sequence [Algebra 2 and Trigonometry]

MST3-A2.A.32 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.32 - determine a specified term of an arithmetic or geometric sequence [Algebra 2 and Trigonometry]

MST3-A2.A.33 [1 occurrence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.33 - specify terms of a sequence, given its recursive definition [Algebra 2 and Trigonometry]

MST3-A2.A.34 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.34 - represent the sum of a series, using sigma notation [Algebra 2 and Trigonometry]

MST3-A2.A.35 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.35 - determine the sum of the first n terms of an arithmetic or geometric series [Algebra 2 and Trigonometry]

MST3-A2.A.36 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.36 - apply the binomial theorem to expand a binomial and determine a specific term of a binomial expansion [Algebra 2 and Trigonometry]

MST3-A2.A.37 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.37 - define a relation and function [Algebra 2 and Trigonometry]

MST3-A2.A.38 [1 occurrence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.38 - determine when a relation is a function [Algebra 2 and Trigonometry]

MST3-A2.A.39 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.39 - determine the domain and range of a function from its equation [Algebra 2 and Trigonometry]

MST3-A2.A.40 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.40 - write functions in functional notation [Algebra 2 and Trigonometry]

MST3-A2.A.41 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.41 - use functional notation to evaluate functions for given values in the domain [Algebra 2 and Trigonometry]

MST3-A2.A.42 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.42 - find the composition of functions [Algebra 2 and Trigonometry]

MST3-A2.A.43 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.43 - determine if a function is one-to-one, onto, or both [Algebra 2 and Trigonometry]

MST3-A2.A.44 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.44 - define the inverse of a function [Algebra 2 and Trigonometry]

MST3-A2.A.45 [1 occurrence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.45 - determine the inverse of a function and use composition to justify the result [Algebra 2 and Trigonometry]

MST3-A2.A.46 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Patterns, Relations and Functions] - Performance Indicator A2.A.46 - perform transformations with functions and relations: f(x+a), f(x)+a, f(x)+a, f(x), af(x) [Algebra 2 and Trigonometry]

MST3-A2.A.47 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Coordinate Geometry] - Performance Indicator A2.A.47 - determine the center-radius form for the equation of a circle in standard form [Algebra 2 and Trigonometry]

MST3-A2.A.48 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Coordinate Geometry] - Performance Indicator A2.A.48 - write the equation of a circle, given its center and a point on the circle [Algebra 2 and Trigonometry]

MST3-A2.A.49 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Coordinate Geometry] - Performance Indicator A2.A.49 - write the equation of a circle from its graph [Algebra 2 and Trigonometry]

MST3-A2.A.50 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Coordinate Geometry] - Performance Indicator A2.A.50 - approximate the solution to polynomial equations of higher degree by inspecting the graph [Algebra 2 and Trigonometry]

MST3-A2.A.51 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Coordinate Geometry] - Performance Indicator A2.A.51 - determine the domain and range of a function from its graph [Algebra 2 and Trigonometry]

MST3-A2.A.52 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Coordinate Geometry] - Performance Indicator A2.A.52 - identify relations and functions, using graphs [Algebra 2 and Trigonometry]

MST3-A2.A.53 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Coordinate Geometry] - Performance Indicator A2.A.53 - graph exponential functions of the form y=bx for positive values of b, including b=e [Algebra 2 and Trigonometry]

MST3-A2.A.54 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Coordinate Geometry] - Performance Indicator A2.A.54 - graph logarithmic functions, using the inverse of the related exponential function [Algebra 2 and Trigonometry]

MST3-A2.A.55 [1 occurrence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.55 - express and apply the six trigonometric functions as ratios of the sides of a right triangle [Algebra 2 and Trigonometry]

MST3-A2.A.56 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.56 - know the exact and approximate values of the sine, cosine, and tangent of 0°, 30°, 45°, 60°, 90°, 180°, and 270° angles [Algebra 2 and Trigonometry]

MST3-A2.A.57 [1 occurrence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.57 - sketch and use the reference angle for angles in standard position [Algebra 2 and Trigonometry]

MST3-A2.A.58 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.58 - know and apply the co-function and reciprocal relationships between trigonometric ratios [Algebra 2 and Trigonometry]

MST3-A2.A.59 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.59 - use the reciprocal and co-function relationships to find the value of the secant, cosecant, and cotangent of 0°, 30°, 45°, 60°, 90°, 180°, and 270° angles [Algebra 2 and Trigonometry]

MST3-A2.A.60 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.60 - sketch the unit circle and represent angles in standard position [Algebra 2 and Trigonometry]

MST3-A2.A.61 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.61 - determine the length of an arc of a circle, given its radius and the measure of its central angle [Algebra 2 and Trigonometry]

MST3-A2.A.62 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.62 - find the value of trigonometric functions, if given a point on the terminal side of angle theta [Algebra 2 and Trigonometry]

MST3-A2.A.63 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.63 - restrict the domain of the sine, cosine, and tangent functions to ensure the existence of an inverse function [Algebra 2 and Trigonometry]

MST3-A2.A.64 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.64 - use inverse functions to find the measure of an angle, given its sine, cosine, or tangent [Algebra 2 and Trigonometry]

MST3-A2.A.65 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.65 - sketch the graph of the inverses of the sine, cosine, and tangent functions [Algebra 2 and Trigonometry]

MST3-A2.A.66 [1 occurrence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.66 - determine the trigonometric functions of any angle, using technology [Algebra 2 and Trigonometry]

MST3-A2.A.67 [1 occurrence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.67 - justify the pythagorean identities [Algebra 2 and Trigonometry]

MST3-A2.A.68 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.68 - solve trigonometric equations for all values of the variable from 0° to 360° [Algebra 2 and Trigonometry]

MST3-A2.A.69 [1 occurrence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.69 - determine amplitude, period, frequency, and phase shift, given the graph or equation of a periodic function [Algebra 2 and Trigonometry]

MST3-A2.A.70 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.70 - sketch and recognize one cycle of a function of the form y = asin bx or y=acosbx [Algebra 2 and Trigonometry]

MST3-A2.A.71 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.71 - sketch and recognize the graphs of the functions y = sec(x), y=csc(x), y=csc(x), y=tan(x), and y=cot(x) [Algebra 2 and Trigonometry]

MST3-A2.A.72 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.72 - write the trigonometric function that is represented by a given periodic graph [Algebra 2 and Trigonometry]

MST3-A2.A.73 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric

Functions] - Performance Indicator A2.A.73 - solve for an unknown side or angle, using the law of sines or the law of cosines [Algebra 2 and Trigonometry] MST3-A2.A.74 [1 occurrence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions, [Trigonometric Functions] - Performance Indicator A2.A.74 - determine the area of a triangle or a parallelogram, given the measure of two sides and the included angle [Algebra 2 and Trigonometry] MST3-A2.A.75 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.75 - determine the solution(s) from the ssa situation (ambiguous case) [Algebra 2 and Trigonometry] MST3-A2.A.76 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.76 - apply the angle sum and difference formulas for trigonometric functions [Algebra 2 and Trigonometry] MST3-A2.A.77 [1 occurence] - MST Standard 3 - Algebra Strand - Students will recognize, use, and represent algebraically patterns, relations, and functions. [Trigonometric Functions] - Performance Indicator A2.A.77 - apply the double-angle and half-angle formulas for trigonometric functions [Algebra 2 and Trigonometry] MST3-A2.M.1 [1 occurrence] - MST Standard 3 - Measurement Strand - Students will determine what can be measured and how, using appropriate methods and formulas. [Units of Measurement] - Performance Indicator A2.M.1 - define radian measure [Algebra 2 and Trigonometry] MST3-A2.M.2 [1 occurrence] - MST Standard 3 - Measurement Strand - Students will determine what can be measured and how, using appropriate methods and formulas. [Units of Measurement] - Performance Indicator A2.M.2 - convert between radian and degree measures [Algebra 2 and Trigonometry] MST3-A2.S.1 [1 occurence] - MST Standard 3 - Statistics and Probability Strand - Students will collect, organize, display, and analyze data. [Collection of Data] - Performance Indicator A2.S.1 - understand the differences among various kinds of studies [Algebra 2 and Trigonometry] MST3-A2.S.2 [1 occurence] - MST Standard 3 - Statistics and Probability Strand - Students will collect, organize, display, and analyze data. [Collection of Data] - Performance Indicator A2.S.2 - determine factors which may affect the outcome of a survey [Algebra 2 and Trigonometry] MST3-A2.S.3 [1 occurence] - MST Standard 3 - Statistics and Probability Strand - Students will collect, organize, display, and analyze data. [Organization and Display of Data] - Performance Indicator A2.S.3 - calculate measures of central tendency with group frequency distributions [Algebra 2 and Trigonometry] MST3-A2.S.4 [1 occurence] - MST Standard 3 - Statistics and Probability Strand - Students will collect, organize, display, and analyze data. [Organization and Display of Data] - Performance Indicator A2.S.4 - calculate measures of dispersion (range, guartiles, interguartile range, standard deviation, variance) for both samples and populations [Algebra 2 and Trigonometry] MST3-A2.S.5 [1 occurence] - MST Standard 3 - Statistics and Probability Strand - Students will collect, organize, display, and analyze data. [Organization and Display of Data] - Performance Indicator A2.S.5 - know and apply the characteristics of the normal distribution [Algebra 2 and Trigonometry] MST3-A2.5.6 [1 occurrence] - MST Standard 3 - Statistics and Probability Strand - Students will make predictions that are based upon data analysis. [Predictions from Data] -Performance Indicator A2.S.6 - determine from a scatter plot whether a linear, logarithmic, exponential, or power regression model is most appropriate [Algebra 2 and Trigonometrv1 MST3-A2.S.7 [1 occurence] - MST Standard 3 - Statistics and Probability Strand - Students will make predictions that are based upon data analysis. [Predictions from Data] -Performance Indicator A2.S.7 - determine the function for the regression model, using appropriate technology, and use the regression function to interpolate and extrapolate from the data [Algebra 2 and Trigonometry] MST3-A2.S.8 [1 occurence] - MST Standard 3 - Statistics and Probability Strand - Students will make predictions that are based upon data analysis. [Predictions from Data] Performance Indicator A2.S.8 - interpret within the linear regression model the value of the correlation coefficient as a measure of the strength of the relationship [Algebra 2 and Trigonometry] MST3-A2.S.9 [1 occurence] - MST Standard 3 - Statistics and Probability Strand - Students will understand and apply concepts of probability. [Probability] - Performance Indicator A2.S.9 - differentiate between situations requiring permutations and those requiring combinations [Algebra 2 and Trigonometry] MST3-A2.S.10 [1 occurence] - MST Standard 3 - Statistics and Probability Strand - Students will understand and apply concepts of probability. [Probability] - Performance Indicator A2.S.10 - calculate the number of possible permutations (nPr) of n items taken r at a time [Algebra 2 and Trigonometry] MST3-A2.S.11 [1 occurence] - MST Standard 3 - Statistics and Probability Strand - Students will understand and apply concepts of probability. [Probability] - Performance Indicator A2.S.11 - calculate the number of possible combinations (nCr) of n items taken r at a time [Algebra 2 and Trigonometry] MST3-A2.S.12 [1 occurence] - MST Standard 3 - Statistics and Probability Strand - Students will understand and apply concepts of probability. [Probability] - Performance Indicator A2.S.12 - use permutations, combinations, and the fundamental principle of counting to determine the number of elements in a sample space and a specific subset (event) [Algebra 2 and Trigonometry]

MST3-A2.S.13 [2 occurences] - MST Standard 3 - Statistics and Probability Strand - Students will understand and apply concepts of probability. [Probability] - Performance Indicator A2.S.13 - calculate theoretical probabilities, including geometric applications [Algebra 2 and Trigonometry]

MST3-A2.S.14 [1 occurence] - MST Standard 3 - Statistics and Probability Strand - Students will understand and apply concepts of probability. [Probability] - Performance Indicator A2.S.14 - calculate empirical probabilities [Algebra 2 and Trigonometry]

MST3-A2.S.15 [1 occurence] - MST Standard 3 - Statistics and Probability Strand - Students will understand and apply concepts of probability. [Probability] - Performance Indicator A2.S.15 - know and apply the binomial probability formula to events involving the terms exactly, at least, and at most [Algebra 2 and Trigonometry]

MST3-A2.S.16 [1 occurrence] - MST Standard 3 - Statistics and Probability Strand - Students will understand and apply concepts of probability. [Probability] - Performance Indicator A2.S.16 - use the normal distribution as an approximation for binomial probabilities [Algebra 2 and Trigonometry]